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Abstract

We aim here at presenting a new procedure to numerically estimate the Fekete points of a wide variety of compact sets
in R3. We understand the Fekete point problem in terms of the identification of near equilibrium configurations for a
potential energy that depends on the relative position of N particles.

The compact sets for which our procedure works are basically the finite union of piecewise regular surfaces and curves.
In order to determine a good initial configuration to start the search of the Fekete points of these objects, we construct a
sequence of approximating regular surfaces. Our algorithm is based on the concept of disequilibrium degree, which is
defined from a physical interpretation of the behavior of a system of particles when they search for a minimum energy
configuration. Moreover, the algorithm is efficient and robust independently of the considered compact set as well as of
the kernel used to define the energy. The numerical experimentation carried out suggests that a local minimum can be
localized with a computational cost of order less than N3.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The problem of obtaining the Fekete points of a compact set has filled a pre-eminent place in the mathe-
matical research during the last decades. In its original version, the problem consists in determining the posi-
tion of N points of a compact subset S � R2 that maximize the product of their mutual Euclidean distances.
The N-tuples, xN ¼ fx1; . . . ; xNg, that satisfy this property are the so-called Nth order Fekete points of S. It is
not difficult to verify that these N-tuples minimize in S the functional
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Kðxi; xjÞ;
where Kðxi; xjÞ ¼ � ln jxi � xjj is the so-called logarithmic kernel and jxi � xjj is the Euclidean distance between
xi and xj. The value IðxN Þ is the potential energy corresponding to the logarithmic kernel when a unitary
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weight is associated with any point. In the three-dimensional Euclidean space multiple variants of the problem
can be formulated by considering different kernels, among which the Riesz’s kernels, defined as
Kðxi; xjÞ ¼ jxi � xjj�s with s > 0, constitute a family of special interest. In particular, the Newtonian kernel, ob-
tained when s = 1, has become one of the most relevant cases and its potential energy IðxN Þ is named elec-
trostatic potential energy. The limit case s! 0 recovers the logarithmic kernel in R3; whereas the case s!1
leads to the so-called best-packing problem or Tammes problem. On the other hand, the electrostatic phenom-
enon in R2 is governed by the logarithmic kernel and the corresponding Fekete points provide ‘‘almost ideal’’
choices of points for polynomial interpolation [20]. Moreover, the usefulness in numerical integration of the
Fekete points corresponding to the logarithmic kernel and others on the d-dimensional sphere has been
showed by different authors, see for instance [5]. The logarithmic kernel also arises in the study of computa-
tional complexity. In particular, the fast generation of near optimal logarithmic energy points for the sphere in
R3 is the focus of one of Smale’s ‘‘Mathematical problems for the next century’’ [22]. For a more detailed
description of the kernels’ properties, see for instance [14].

The determination of the Fekete points of the unit sphere is considered a model of highly non-linear opti-
mization problem with non-linear constraints. In general, only when the constraints are linear or they can be
sufficiently well approximated by linear constraints it is reasonable to expect a good behavior of the usual
algorithms for optimization problems with constraints. However, even in this case, the convergence ratios
result lower than the ones corresponding to free optimization methods. Some authors choose to transform
problems like the Fekete point one in optimization problems without constraints by considering a parametri-
zation of the surface [16,18]. In this way, they can use classical optimization techniques such as the Gradient
method, the Conjugate Gradient method, the Newton method and the family of quasi-Newton methods. Also
other techniques like the so-called Combinatory Optimization methods have been used, among which stand out
the Simulated Annealing, the Tabu Search and the Genetic Algorithms [16]. On the other hand, there exist few
results on estimations of the Fekete points of manifolds others than the sphere. In particular, the Fekete points
of the torus have been recently studied, see [9,25].

A considerable amount of theoretical and numerical results related to the different versions of the Fekete
points problem have been obtained, see for instance [9–13,16,18,19,24], and it has been completely solved in
some particular cases. Nevertheless, it is widely assumed that just to obtain a position near to a local optimum
for hundreds of points in the sphere requires high computational resources.

In this paper, we propose an algorithm for the numerical estimation of the Fekete points of non-smooth
compact sets. Essentially, these compact sets are the finite union of piecewise regular manifolds of different
dimensions. We focus in the three-dimensional case, since the estimation of Fekete points is of interest in
Chemistry, Biology, Nanotechnology, CAD, etc., see [1,2,9,19]. Moreover, in most of the examples we have
considered the Newtonian kernel due to its special relevance, for instance in the electrical and gravitational
phenomena, however we also include some examples that consider other kernels. The relation between the
electrostatic potential energy of a system of particles and the energy of a distributed charge has been analyzed
by several authors. In particular, the results of [12] provide us with a good framework to contrast the quality
of the solutions obtained with our algorithm.

We start by describing an algorithm to estimate the Fekete points of smooth surfaces. Next, we analyze the
behavior of this algorithm with the prototype problem, the unit sphere. Then, we present a transition case: we
estimate the Fekete points of the unit cube by means of the algorithm for smooth surfaces, which requires the
use of symmetries to reduce the domain to an open triangle. Finally, we develop a strategy for the estimation
of the Fekete points of non-smooth surfaces, and we present several application examples. Throughout the
paper the numerical estimation of the Fekete points of a compact set consists in identifying a local minimum
from a starting configuration; i.e., in obtaining a sufficiently close configuration to a local minimum in such a
way that the Newton’s algorithm converges.

2. Smooth surfaces

In this section, we present the fundamentals of our algorithm to estimate the Fekete points of a smooth
surface. The basic structure of the algorithm is classical in the sense that each iteration consists in obtaining
the advance direction and the step size in a deterministic way.
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The ideas behind the algorithm come from Physics. We do not try to answer directly the question about
which are the minimum potential energy configurations, but how the points of a non-optimal configuration
can advance, in a mechanical sense, to reach a minimum potential energy configuration. The equivalence
between minimum potential energy and static stable equilibrium configuration constitutes the key of the
method. A mechanical system formed by particles is in equilibrium if the total force that acts on each one
of these particles is null. The equilibrium is stable if small perturbations in the position tend to return each
particle to its original position, and then this position is a minimum for the potential energy of the system.
So, for a given non-optimal configuration, non-equilibrated forces must be acting on the particles and these
forces will inevitably induce their movement. We wonder about the character of these forces and of this move-
ment, and about when they will carry the particles to an equilibrium position.

Firstly note that the energy of a system of N unitary particles xk 2 R3; k ¼ 1; . . . ;N ; is given by
I ¼ 1

2

PN
i¼1V i, where V i ¼

PN
j¼1
j 6¼i

Kðxi; xjÞ is the potential created at xi by all the other particles. If the particles

lie on a regular surface S � R3, then we denote by ni the normal vector to S at xi. If we fix the position of N � 1
particles fxj 2 S : j ¼ 1; . . . ;N ; j 6¼ ig, then Vi is a function of xi and the opposite of its gradient, that we
denote by F i ¼ �rV i 2 T xiðR3Þ, represents the repulsive force that acts on the ith particle due to the existence
of the rest. We consider F n

i ¼ hF i; niini and F T
i ¼ F i � F n

i , the normal and tangent components to S of the force
Fi at xi, respectively. On the other hand, if M=SN, then ðF T

1 ; . . . ; F T
N Þ ¼ �rIjM is the steepest descent direc-

tion of I in M, independently of the possible parametrizations of S.
The ith particle is in equilibrium on S if F T

i ¼ 0. Therefore, jF T
i j could be a measure of the disequilibrium

degree of that particle on S. Nevertheless, Fig. 1 suggests that an alternative measure of the disequilibrium
degree based on the angle between Fi and ni could result more satisfactory. Effectively, two particles xi and
xj with jF T

i j ¼ jF T
j j can be ‘‘more or less equilibrated’’ on S depending on the angle between the forces Fi

and Fj and their corresponding normal vectors ni and nj. We define
jF T

i j
jF i j as the disequilibrium degree of the

ith particle. The suitability of this choice will be showed clearly throughout the paper.
The following simple proposition establishes that to advance according with this disequilibrium measure

descents the energy of the system.

Proposition 2.1. The direction
w ¼ F T
1

jF 1j
; � � � ; F T

N

jF N j

� �
is of descent of the energy constrained to M. In addition, every particle contributes to the descent.

Proof. The direction w is obviously compatible with the constraints of the problem, since w 2 T xðMÞ. The
result follows from the fact that
hw;�rIjMi ¼
XN

i¼1

jF T
i j

2

jF ij
P 0: �
Fi

Fj
TFi

T

Fj

αj

α
i

Fig. 1. Disequilibrium degree.
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Observe that the direction w does not coincide with the one given by the Gradient method except in very
particular cases, for example in the sphere with a great number of particles when they are in stages very close
to the equilibrium. On the other hand, as the disequilibrium degree indicator that we propose here is bounded
– in fact, it is normalized between 0 and 1 – it allows us to treat each particle only in relation to its own poten-
tial equilibrium degree and independently of the relative distance to the rest of particles. The rest of the clas-
sical optimization methods, like Conjugate Gradient, Newton or quasi-Newton, choose advance directions
that in general do not guarantee that each particle contributes to the descent, which results not very natural
in the iterative process.

In any case, the most substantial difference between our approach and the classical methods is that the
determination of the advance direction and of the step size is completely independent of the parametrization
that has been chosen. Regarding to the direction, that independence has already been made clear. As for the
step size some considerations must be made. Given an initial configuration, a unique stationary point for I

must exist such that the particles arrive to it following the direction wi ¼ F T
i
jF ij. Consequently, from the point of

view of Mechanics, these directions not only can be understood as energy descent directions, but also as the
velocity fields of the paths described by the particles in their movement towards the equilibrium. This
approach allows us to look at the optimization problem from the dynamic systems perspective. The step size
will be chosen by applying an explicit forward Euler method to the ODE system whose solution is precisely
these paths. This ODE system is raised in a natural way in the ambient space coordinates and its numerical
integration fixes a displacement for each particle in that space. In general, the application of that displacement
takes the particles out of the surface S, which generates the need of considering an algorithm to return the
particles to the surface in each iteration. Maybe the most versatile and simple method consists in using the
gradient field of an implicit representation of the surface. When the surface is described in a parametric form,
the composition with the metric allows us to transfer the step magnitude to the parametric space, which solves
the return problem.

It is interesting to make some observations about the treatment of the problem from this mechanical point
of view. If xðtÞ ¼ ðx1ðtÞ; . . . ; xN ðtÞÞ denotes the position of N particles in the instant t, then an equation for the
movement of the system on a surface S can be
x00ðtÞ ¼ �rIðxðtÞÞ � cx0ðtÞ þ UðxðtÞ; x0ðtÞÞ:

The term �cx0ðtÞ, with c > 0, represents a dissipative force of viscous nature and U ¼ ðU1; . . . ;UN Þ is an addi-
tional force that takes into account the interaction between each particle and S. For each i ¼ 1; . . . ;N ; the
normal component of Ui, Un

i ¼ qjx0ij
2 � F n

i , cancels the normal component of Fi and it provides the centripetal
force, being q the normal curvature in the direction of x0i at xi 2 S. The tangent component UT

i considers the
friction with S and its expression depends on each particular model. If the friction force is not considered, then
it is easy to prove that as c!1 the trajectories that solve the above movement equation tend to be the envel-
oping of the vectors F T

i . Hence, in this case the particles follow the direction of �rIjM . It is possible to pro-
pose a friction model such that the corresponding trajectories tend to be the enveloping of the vectors wi.

Therefore, the search for the minimum of the energy will be carried out by obtaining the paths described by
the particles in their movement towards the equilibrium when c!1. These ideas belong to the fundamentals
of Rational Mechanics and have already been used in the literature by different authors, see for example
[17,21,23]. However, in many cases the equilibrium of the particles is purely heuristic and it does not come
from the minimization of an explicit functional, and, anyway, the objective is not to localize an equilibrium
configuration as a goal in itself, but to arrive to a reasonable level of approximation.

In short, the ODE system that we solve is
x0 ¼ w:
We use the following explicit forward Euler method for its numerical resolution:
xkþ1 ¼ xk þ auðxkÞwk;
where a is a positive scalar that depends on N, on the kernel and on the surface S, and uðxkÞ depends on the
current position of all the particles of the system and it allows us to adapt the step size to the difficulty of the
different configurations that appear during the calculation. The step size must be reduced when there exist very
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close particles in order that they do not ‘‘run helter-skelter’’ breaking the continuity of the movement, whereas
if the relative distances grow, the step size can be increased in benefit of the convergence ratio. An appropriate
choice is
Table
Refere

Kerne

a

uðxÞ ¼ min
16p<q6N

fjxp � xqjg;
according to which ajwij represents the fraction of the minimum distance between particles that the ith one
advances in each iteration.

The numerical experimentation carried out by the authors confirms that this algorithm converges – in the
sense that it localizes an equilibrium position – even for crazy initial positions, for instance the corresponding
to confine the N particles in the Nth part of the area of the surface.

3. Unit sphere

The problem of obtaining Fekete points in the unit sphere is probably the most characteristic both for its
hardness and for its different applications. This topic was treated from a numerical point of view in the Ph.D.
of Zhou [26] and in some works generated around it [18,19]. In [26], minimum energy configurations were
obtained for each N 6 200 in the case of the Newtonian and logarithmic kernels. Moreover, the author pro-
posed some extrapolation formulae for the minimum energy associated to those kernels, which can also be
found in [18]. The algorithms used in these works are quasi-Newton after the elimination of the constraints
by means of the stereographic projection. More recently new results have been obtained by Womersley [24]
by using similar techniques.

In this section, we present the application of our algorithm in the unit sphere, we analyze its properties and
we evaluate the quality of the obtained solutions. After the generation of an arbitrary initial configuration x0

of N different points on the sphere, the steps of the kth iteration of our algorithm are

– Calculate the advance direction wk�1.
– Calculate x̂k ¼ xk�1 þ adk�1wk�1.
– Obtain the kth configuration: xk

i ¼
x̂k

i
jx̂k

i j
.

Here, dk�1 represents the minimum distance between two points of the (k-1)th configuration, that is
obtained as a byproduct of the advance direction calculation. For the kernels we are interested in, the most
expensive step of the iterative process is precisely the calculation of this direction, that involves order N2 oper-
ations. In Table 1 we show reference values for the coefficient a for some kernels in the sphere.

To study the convergence of our algorithm, we use as a measure of the error the maximum disequilibrium
degree of the particles; i.e., max

16i6N
jwij. If we analyze the evolution of the error with respect to the iteration num-

ber, we observe that a linear convergence ratio is systematically attained after a first highly non-linear stage.
When the linear stage is reached the particles can be supposed to be sufficiently close to a stationary point, in
the sense that from this moment the Newton’s algorithm can be used with guaranty of convergence. In the
sequel, we will use indistinctly the terms ‘‘near local-minimum configuration’’ and ‘‘configuration in linear ten-
dency’’ to describe this stage of the calculation.

Fig. 2a illustrates the behavior of the error for a configuration of 1000 particles with the Newtonian kernel.
Fig. 2b displays the evolution of the difference between the energy corresponding to the extrapolation formula
given in [18] and the energy computed with our algorithm. We must note that the energy given by the formula,
in spite of being accurate, can be improved very quickly. In fact, this happens long before the linear tendency
is reached.
1
nce values for the coefficient a

l Logarithmic Newtonian Riesz s = 2 Riesz s = 3

8 1 0.1 0.02
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Fig. 2. The behavior of the algorithm.
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Fig. 3 shows the initial and final configurations of the non-linear stage for the previous case as well as the
Dirichlet cells of both configurations. The initial configuration was generated randomly by adjusting the dis-
tribution of the particles to a uniform probability density on the sphere. We must note that the energy pro-
duced by the initial configuration is 500144.450659 and after the iterative process the energy value is
482534.789049, which represents only a 3.5% of decrease. On the other hand, the algorithm shows a high effi-
ciency, since the time required to reach the linear tendency was around 15 min and to surpass the extrapolated
energy value required only around 2 min with a conventional Pentium IV processor of 2.54 GHz and 512 Mb
of RAM.

Fig. 4 shows a configuration of, 5000 particles when the linear tendency has been attained, which required
approximately 20 h. With a configuration of 50000 particles, and without considering symmetries, the time
required to improve the energy corresponding to the extrapolation formula was of approximately 15 h.

Next we validate our algorithm by comparing the results provided by it with the ones available in the lit-
erature. With this aim, we have performed a test that consists in localizing the best minimum obtained from
1000 different random initial positions. Womersley developed a similar test for the Newtonian kernel with
N ¼ ðmþ 1Þ2 and m up to 80, see [24]. In Table 2, we show the number of starting positions that lead to
Fig. 3. One thousand particles and its Dirichlet cells for the iterations 0 and 8000.



Fig. 4. A beautiful configuration and the Dirichlet cells for N = 5000.
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the best energy value, ng, the number of different local minima identified in 1000 runs, nl, and the correspond-
ing best electrostatic potential energy, I. We have stopped the test when in 1000 runs no one of the local min-
ima obtained gives the energy value calculated by Womersley, which happens for N = 256. For this number of
particles we have found 995 different local minima with a best energy value of 30506.79464064, whereas
Womersley obtains a configuration with a value of 30506.68751585.

Fig. 5 (left), extracted from [24], displays the distribution of local minima obtained by Womersley for N = 169
and 100000 runs, whereas Fig. 5 (right) shows the distribution obtained by us in the same case with 1000 runs.

Although the results obtained with our algorithm suggest an average cost of order less than N3 to attain a
configuration in linear tendency, it is still necessary more numerical experimentation to confirm it. It must be
considered that in such a non-linear problem, some fluctuations in the cost are natural. For instance, for fixed
N similar initial configurations could require different calculation times, whereas configurations with more
particles than others could require less iterations. It is clear that the memory requirements are of order N.
Moreover, the tests carried out until now confirm the robustness of the algorithm.

To obtain good equilibrium configurations for a great number of particles without an increase of the com-
putational resources we can use the symmetries of the sphere. The geodesic lattices are good initial configu-
rations that take into account that symmetries. In particular, we consider families of truncated
icosahedron, which corresponds to use 120 symmetries. Although the geodesics constitute an excellent family
Table 2
Validation of the algorithm

N ng nl I

4 1000 1 3.674234614175 · 100

9 1000 1 2.575998653127 · 101

16 770 2 9.291165530254 · 101

25 1000 1 2.438127602988 · 102

36 1000 1 5.291224083754 · 102

49 1000 1 1.011557182654 · 103

64 846 6 1.765802577927 · 103

81 461 8 2.878522829664 · 103

100 439 27 4.448350634331 · 103

121 55 82 6.586121949584 · 103

144 188 158 9.414371794460 · 103

169 37 498 1.306800645113 · 104

196 2 837 1.769346054808 · 104

225 13 904 2.344943646067 · 104



Fig. 5. Distribution of local minima for N = 169. The left graph was extracted from [24].
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of initial configurations, they do not present a uniform density of points. This is due to the projection that
takes the points from the faces of the icosahedron to the sphere. In this conditions, our algorithm basically
smooths the density, as can be seen in Fig. 6. In this figure we represent the initial and final positions of
the points corresponding to a face of the original icosahedron for a configuration with 12002 particles in total.

In Fig. 7, we present the convergence curves for several configurations whose initial positions are defined by
different frequency geodesic lattices. The total number of particles for each one of the seven cases considered
are (1) N = 4322, (2) N = 12002, (3) N = 27002, (4) N = 52922, (5) N = 100922, (6) N = 201722,
(7) N = 300002. Note that the evolution of the error is very smooth even before the final linear tendency is
attained. A reason for that is the great quality of the initial configurations. Moreover, it must be observed that
all the geodesics of this family start with approximately the same error. This fact can be used to perform an
analysis of the cost in similar conditions. If we consider the reference error e ¼ 5� 10�3, we can obtain in each
case the number of necessary iterations to attain e. This is shown in Fig. 7 as well as a simple interpolation of
the data.
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4. A transition case

In this section, we present a transition case between smooth surfaces and non-smooth surfaces. As the cube
is not a smooth surface we have considered its 48 symmetries reducing the domain to an open triangle that
represents the eighth part of the cube face, so that the above algorithm still works. Since the electrostatic
charge density of the cube is singular on the edges, an important accumulation of particles near them will
occur, which a priori seems to increase the difficulty of the search of an equilibrium configuration. However,
we want to emphasize that the behavior of our algorithm in the cube is essentially the same than in the sphere,
and this is fundamentally due to the choice of w as the advance direction. Other possible choices, as for exam-

ple �wi ¼ F T
i

jF jjmax
, which is equivalent to follow the gradient direction, leads to unsatisfactory results, as the fol-

lowing experiments show.
We have tested both directions starting from an ‘‘equispaced’’ distribution (Fig. 8, left) of 78 particles in the

triangle. The local minimum attained (Fig. 8, right) is the same in both cases, but the gradient direction
requires approximately 10 times more iterations to arrive to the linear tendency than the w direction, as it
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Fig. 8. Initial and final configuration for 78 particles in the triangle.
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is shown in Fig. 9. In each case, the step size was determined according to the mechanical criterion described in
Section 2 and it was chosen as fast as possible keeping the convergence. We want to observe that the calcu-
lations performed with the gradient direction do not correspond to the standard Gradient method, in which
the step size is typically obtained by means of the so-called line search procedure.

The fact that both directions lead to the same configuration from a given initial position is casual. In most
cases, the final local minima are different, but the direction w arrives sooner to the linear tendency and the final
linear convergence ratio is higher, with rare exceptions. To complete this study we have computed the average
ratio between the number of necessary iterations to attain a maximum disequilibrium degree of 10�5 following
the gradient direction, which is denoted by n�w, and following the direction w, which is denoted by nw, for dif-
ferent number of points in the triangle, Nt. The results are displayed in Table 3. The average ratio has been
obtained from 100 runs for each Nt, starting from the same random initial positions for both directions, and,
as above, taking a step size as fast as possible keeping the convergence. Among the 1000 total runs, only in five
of them the gradient direction was faster than the direction w. Moreover, the average ratio corresponding to
these five cases is only 0.8. Although Nt varies in a short range, the results suffice to see that the ratio tends to
increase with Nt, which in general happens in any compact set. Uniquely the geometry of the sphere makes
both directions ‘‘equivalent’’, in the sense that to attain the linear tendency requires approximately the same
average number of iterations.

Fig. 10 shows a near local-minimum distribution in a face of the unit cube obtained by our algorithm for a
total quantity of 47520 particles, which corresponds to N t ¼ 990. The linear tendency is reached in 40000
iterations.

Clearly, the equilibrium configuration showed in Fig. 10 cannot be considered a good estimation of the
Fekete points of a cube. The use of symmetries implies certain constraints. In our starting position, we have
placed all the particles in the interior of the open triangle, and hence in the final configuration there are no
points on the edges of the cube. If we want charges on the edges in the final configuration, we need to decide
how many charges we have to place on the boundary of the triangle in the starting position. So, it seems nec-
essary to complete the above algorithm to tackle the problem of the numerical estimation of the Fekete points
of non-regular objects.
Table 3
Average behavior of the gradient versus the w direction

Nt 5 10 15 20 25 30 35 40 45 50
n�w
nw

2.3 4.1 4.3 5.4 6.2 6.2 7.5 9.3 8.8 9.1



Fig. 10. Particles (7920) in linear tendency on a cube face.
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5. Non-smooth surfaces

When S is not a connected compact differentiable surface without boundary, to estimate its Fekete
points becomes a more difficult problem. For instance, if we consider S the boundary of a regular tetra-
hedron and we give an initial distribution of particles on S, it is easy to see that the force acting on each
particle makes it to remain on the face where it initially was. Therefore, if the initial distribution has not a
suitable number of particles on each face, the attained local minimum will be very far from being an
acceptable solution for the global Fekete point problem on S. In more general cases, to advance accord-
ing to the direction of Fi restricted to a non-regular surface could allow a particle to move from one face
to another, but even then a lot of unsatisfactory local minima could be attained if the initial distribution is
not suitable.

In general, for a given non-regular surface it is impossible to predict the number of particles that will lie on
each face and on each edge when the Fekete problem has been solved. From a numerical point of view, one
cannot expect to solve the problem beyond obtaining a local minimum from a given initial configuration.
Therefore, it is necessary to design a strategy for the generation of good initial configurations. With this
aim, we work from the intuitive idea that a configuration of N points in a reasonably good equilibrium state
on a regular surface Sm that is sufficiently close to the non-regular surface S can be used to construct a good
initial position to start the numerical search of the Fekete points of S. In fact, our numerical strategy for the
generation of initial positions consists in finding a sequence of acceptable equilibrium configurations on a
small number of approximating regular surfaces Sk, 1 6 k 6 r – we usually take r = 2 – by means of the algo-
rithm presented in Section 2. Each one of the points xi of the final configuration in Sk is projected to the sur-
face Sk+1 to act as its starting configuration. Then, projecting the final rth configuration to S we obtain a
good starting position for a further accurate calculation of an equilibrium configuration on it. With respect
to the initial configuration corresponding to S1, there are not special requirements and it can be generated,
for instance, randomly.

In the following subsections we examine the most relevant aspects of the above reasonings. Firstly, we
describe the family of compact sets where we are going to consider the Fekete point problem, and that will
be called weakly smooth compact sets, W-compact sets in short. We also analyze the accessibility to these com-
pact sets by means of approximating regular surfaces, and we make certain theoretical considerations that
supports our numerical approach. Secondly, the fundamentals of a versatile technique for the generation of
sequences of regular surfaces tending to W-compact sets are presented. We finish studying the potential energy
restricted to a W-compact set and describing our algorithm for the estimation of the Fekete points of
W-compact sets.
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5.1. W-compact sets

We would like to emphasize the generality of the sets where we can obtain good configurations for the
Fekete point problem. The most relevant characteristic of the family of sets that we consider is, roughly speak-
ing, the piecewise smoothness in a wide sense. In particular, we admit the finite union of surfaces with curves.

Let S � R3 be a connected compact set with two-dimensional Lebesgue measure. Let us also consider the
subsets:
A ¼ fx 2S : S is a differentiable 2-manifold at xg;
and
B ¼ fx 2S n A : S n A is a differentiable 1-manifold at xg:
We call face, edge and vertex of S each connected component of A, B and S n ðA [ BÞ, respectively. We say
that S is a W-compact set, when it has a finite number of faces, edges and vertices and in addition S n A is a
set with 1-dimensional Lebesgue measure and S n ðA [ BÞ has null Lebesgue measure.

We work with W-compact sets such that for each n P m0 the number of connected components of
Dn ¼ fx 2 R3 : dðx;SÞ ¼ 1

ng remains constant and equals the number of connected components of R3 nS;
where d represents the Euclidean distance in R3. Then, there exists a sequence of connected compact differen-
tiable surfaces without boundary, fSng1n¼1; that tends to S; in the sense that for each x 2S; dðx; SnÞ ! 0 and
also the sequence fmaxx2Snfdðx;SÞgg

1
n¼1 ! 0.

Observe that the surfaces Sn can be built from Dn by connecting all its connected components and
smoothing the final surface. Specifically, we connect two components as follows. Let us consider a regular
point x on a face that belongs to the boundary of two connected components of R3 nS. Then we can
choose rn such that D1

n ¼ fx 2 R3 : dðx;S1
nÞ ¼ 1

ng has one connected component less than Dn, where
S1

n ¼S n fBðx; rnÞ \Sg.
Now, we can analyze the construction of good initial positions for the Fekete point problem for W-compact

sets. It is well known that if a compact set K � R3 is the intersection of a decreasing sequence of compact sets
fKng1n¼1; then the measures that minimize the Newtonian energy of Kn weakly* converge to the measure that
minimizes the Newtonian energy of K. Taking into account that the Newtonian optimal measure of Kn has its
support on the outer boundary o0Kn; then the electrostatic optimal measures of the boundaries o0Kn weakly*

converge to the electrostatic optimal measure of o0K. On the other hand, the discrete measure supported by
the Fekete points of o0Kn weakly* converges to the optimal measure of o0Kn.

These results suggest that a sufficiently well equilibrated configuration of N points on a sufficiently good
approximating surface can be used to construct a good initial position to start the search of the Nth order
Fekete points of S. Our intention here is to show evidence of the effectiveness of this numerical approach even
in contexts that are not necessarily under the hypotheses of the classical theorems. For other results about
approximation of solutions of the energy minimization problem considering several kernels, measures sets
and support spaces see [3,8,14].

5.2. Regular approximation to W-compact sets

From a practical point of view, we need an effective technique to construct a sequence of approximating
surfaces fSng1n¼1 of a given W-compact set. Among the different procedures that could be used, we want to
mention one based on a technique of composition of implicit functions widely used in different areas, espe-
cially in Computer Graphics, see for instance [4]. This method provides global implicit equations to describe
very general geometries.

We present here a systematic analysis of three fundamental cases associated to the approximation of
boundaries of open sets, surfaces with boundary and curves. Then, the feasibility of the approximation of
a wide variety of W-compact sets that are the combination of these three cases by means of more general com-
position operations can be easily proved.



2366 E. Bendito et al. / Journal of Computational Physics 225 (2007) 2354–2376
5.2.1. Case 1: boundaries of open sets

Next, we analyze the approximation process to the boundaries of open sets that can be described in the
form
X ¼ x 2 R3 : max
16i6k
fGiðxÞg < 1

� �
;

where Gi : R3 ! Rþ, i ¼ 1; . . . ; k, k 2 N are sufficiently smooth functions. Let we consider the sequence
fAng1n¼1 of open sets defined for each n 2 N by
An ¼ x 2 R3 :
Xk

i¼1

GiðxÞn < 1

( )
:

Lemma 5.1. The sequence fAng1n¼1 increases to X, that is, An " X. Moreover, the sequence foAng1n¼1 tends to

oX ¼ fx 2 R3 : max
16i6k
fGiðxÞg ¼ 1g.

Proof. Let us consider x 2 An. Then for each i 2 f1; . . . ; kg, 0 6 GiðxÞ < 1, and hence
Pk

i¼1GiðxÞnþ1
<Pk

i¼1GiðxÞn < 1 and x 2 Anþ1. On the other hand, if x 2 X and Ux ¼ max16i6kfGiðxÞg, then 0 6 Ux < 1 andPk
i¼1GiðxÞ‘ 6 kU‘

x, ‘ 2 N. Therefore, if nx ¼ minfj 2 N : kUj
x < 1g then for each n 2 N such that n P nx,

x 2 An. h

The following simple example illustrates this case. The sequence of sets
oAn ¼ fðx; y; zÞ 2 R3 : x2n þ y2n þ z2n ¼ 1g;

goes from the sphere to the cube
oX ¼ fðx; y; zÞ 2 R3 : maxfx2; y2; z2g ¼ 1g;

when n goes from 1 to 1.

5.2.2. Case 2: surfaces with boundary

We consider now the approximation to connected compact surfaces with boundary that can be described in
the form
C ¼ x 2 R3 : GðxÞ ¼ 0;HðxÞ 6 0
� �

;

where G;H : R3 ! R are sufficiently smooth functions. Consider also the sequence fAng1n¼1 of open sets de-
fined for each n 2 N by
An ¼ fx 2 R3 : nGðxÞ2 þ HðxÞ > 0g:
1 3 1

Lemma 5.2. The sequence fAngn¼1 increases to R n C. Moreover, the sequence foAngn¼1 tends to C.

Proof. If x 2 An, then ðnþ 1ÞGðxÞ2 þ HðxÞP nGðxÞ2 þ HðxÞ > 0 and hence x 2 Anþ1. On the other hand, if
x 2 R3 n C then either GðxÞ2 > 0 or HðxÞ > 0. In any case, if nx ¼ minfj 2 N : jGðxÞ2 > �HðxÞg then for each
n 2 N such that n P nx, x 2 An. h

Observe that oC � oAn for each n 2 N. In addition, if C is a surface without boundary of the form
C ¼ fx 2 R3 : GðxÞ ¼ 0g, the above result is also true taking H = �1.

As an example of this situation, we can mention the approximation of the unit disc
C ¼ fðx; y; zÞ 2 R3 : z ¼ 0; x2 þ y2 � 1 6 0g;
by means of the sequence of oblate ellipsoids
oAn ¼ fðx; y; zÞ 2 R3 : nz2 þ x2 þ y2 � 1 ¼ 0g:
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5.2.3. Case 3: curves with boundary

We focus here in the approximation to connected compact curves with boundary that can be described in
the form
C ¼ fx 2 R3 : GðxÞ ¼ 0;HðxÞ ¼ 0; J 1ðxÞ 6 0; J 2ðxÞ 6 0g;
where G;H ; J 1; J 2 : R3 ! R are sufficiently smooth functions verifying that the set
fx 2 R3 : J 1ðxÞ > 0; J 2ðxÞ > 0g is empty. Consider also the sequence fAng1n¼1, of open sets defined for each
n 2 N by
An ¼ fx 2 R3 : nGðxÞ2 þ nHðxÞ2 � J 1ðxÞJ 2ðxÞ > 0g:
Lemma 5.3. The sequence fAng1n¼1 increases to R3 n C. Moreover, the sequence foAng1n¼1 tends to C.

Proof. If x 2 An, then
ðnþ 1ÞGðxÞ2 þ ðnþ 1ÞHðxÞ2 � J 1ðxÞJ 2ðxÞ > nGðxÞ2 þ nHðxÞ2 � J 1ðxÞJ 2ðxÞ > 0
and hence x 2 Anþ1. On the other hand, if x 2 R3 n C then either GðxÞ2 þ HðxÞ2 > 0 or J 1ðxÞJ 2ðxÞ < 0. In any
case, if nx ¼ minfj 2 N : jðGðxÞ2 þ HðxÞ2Þ > J 1ðxÞJ 2ðxÞg then x 2 An, for each n 2 N such that n P nx. h

Observe that oC � oAn for each n 2 N. Moreover, if oC ¼ ; it suffices to take J 1 ¼ J 2 ¼ �1; whereas if
oC � fJ 1 ¼ 0g; it suffices to take J 2 ¼ �1.

The approximation of the segment
C ¼ fðx; y; zÞ 2 R3 : y ¼ 0; z ¼ 0; x� 1 6 0;�x� 1 6 0g;

by means of the sequence of prolate ellipsoids
oAn ¼ fðx; y; zÞ 2 R3 : ny2 þ nz2 þ x2 � 1 ¼ 0g

illustrates this case.
5.3. The energy restricted to a W-compact set

Let S be a W-compact set. For each x 2S; we can consider the set Cx of all the differentiable curves con-
tained in S with origin in x. Under this conditions, we define the mobility set of x on S, TxðSÞ; by
TxðSÞ ¼ t 2 R3 : t is the unitary tangent vector at x of c 2 Cx

� �
:

If x is on a face of S, then its mobility set generates the tangent plane to S at x; T xðSÞ.
If f : R3 ! R is a regular function in x 2S; let us consider the scalar
p ¼ max
t2TxðSÞ

f�hrf ðxÞ; tig;
and the set txðSÞ defined by
txðSÞ ¼
ft 2TxðSÞ : �hrf ðxÞ; ti ¼ pg; if p > 0;

f0g; if p 6 0:

�

Under these conditions, we define the set
Gxðf ;SÞ ¼ ptxðSÞ;

as the steepest descent set of fjS at x.

Let us note that even when S is a W-compact set, Gxðf ;SÞ can contain a non-numerable quantity of ele-
ments. For example, if x is the vertex of a revolution half cone and �rf ðxÞ points towards the interior of the
cone in the direction of its axis, then txðSÞ is TxðSÞ.
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If x 2 S, then we define the set
NxðSÞ ¼ fq 2 S2 : hq; ti 6 0 for each t 2TxðSÞg;

as the normal set to S at x. Observe that if rf ðxÞ 6¼ 0 and � rf ðxÞ

jrf ðxÞj 2NxðSÞ then x is in equilibrium on S and
hence we say that x is a generalized stationary point of fjS. Let us note that if TxðSÞ has only one element then
NxðSÞ is a closed hemisphere. Hence, in general, NxðSÞ is the intersection of all the closed hemispheres asso-
ciated with each t 2TxðSÞ. If x belongs to a face, then NxðSÞ has only two opposite points that define the
normal direction to the face. In the simple case in which S is the boundary of a convex polyhedron, if x be-
longs to an edge, then NxðSÞ is an arc of circumference, and if x is a vertex where r faces meet, then NxðSÞ is
the convex spherical r-gon whose vertices are the outer normal vectors to these faces. In a general case NxðSÞ
can admit multiple forms. If NxðSÞ has non-null bi-dimensional measure, then x is necessarily a vertex, but
no more general results exist. For example, NxðSÞ can be the empty set in a vertex. A point x 2S such that
NxðSÞ ¼ ; have more freedom of movement than the points on a face, because x is a generalized stationary
point of fjS only when x is a stationary point of f.

For a given x 2S; the computation of Gxðf ;SÞ requires in general to solve an optimization problem.
However, its resolution can be reduced to a finite number of trivial verifications except when x belongs to
the boundary of a face C such that C is not regular at x, in which case ad hoc techniques must be used. If
x 2 S belongs to a face, then the unique element in Gxðf ;SÞ is �PrT xðSÞrf ðxÞ; i.e, the projection of
�rf ðxÞ on the tangent plane T xðSÞ. Otherwise, let us suppose, for instance, that x is a vertex belonging to
the boundaries of the faces h1; . . . ; hr and to the boundaries of the edges e1; . . . ; es; and that hj are regular
at x. We denote by pj the tangent plane to hj at x and by ti the unitary tangent vector to the edge ei at x. Con-
sider now the closed half straight lines li generated by ti and the closed subsets p̂j � pj that are delimited by the
two half straight lines lj1

; lj2
� pj. Then it suffices to find the best approximation of x�rf ðxÞ to the r sets p̂

and to the m half straight lines l that do not belong to any p̂. For this we calculate yj ¼ �Prpjrf ðxÞ; and we
generate a list L containing all the scalars jyjj such that x� yj 2 p̂j and the scalars �hrf ðxÞ; ti corresponding
to the m half straight lines referred above. In this conditions, p is the maximum element in L, and txðSÞ is
directly obtained. Other simpler cases can be analogously solved.

With regards to the Fekete point problem, we can choose any element in GxðV i;SÞ as F T
i . On the other

hand, the different definitions made above can be directly generalized. If M ¼SN and x ¼ fx1; . . . ; xNg
2M; then we denote the mobility set of the configuration x 2M by TxðMÞ ¼Tx1

ðSÞ � . . .�TxN ðSÞ.
The sets txðMÞ; GxðI;MÞ and NxðMÞ can be analogously defined.

5.4. The algorithm

With the background of the previous subsections, we can describe the main steps of our algorithm for the
estimation of the Fekete points of W-compact sets. We want to point out that an important part of that back-
ground has the objective of producing good initial positions to obtain good local energy minima on a non-
smooth object.

Our approach has two different parts. The first one has a purely geometric character, and it comprises the
description of the W-compact set S; the construction of its approximating regular surfaces and the choice of a
procedure to project points from one of these objects to another. The second part consists in an iterative algo-
rithm for the search of Fekete points, and it includes the determination of an advance direction, a step size and
a geometric criterion to return the points to the object.

We have presented above a useful technique to define approximating implicit surfaces. Independently of the
procedure used for the generation of these surfaces, we must note that to obtain good initial positions it is
necessary to design an ad hoc approximation strategy for each considered problem, in the sense that the num-
ber of intermediate approximating surfaces and their degree of approximation to S must be adapted to the
specific geometric difficulties of S and to the number of points. In the following section, we present a variety
of examples that show how this strategy can be developed in a simple way in many practical cases.

On the other hand, the closest point technique provides a very general way of projecting points from a set to
another. However, this technique can project two different points to the same position and it requires to solve
a non-trivial optimization problem. In many cases to project along the normal direction can also be an inter-
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esting method. Although this can be done efficiently by means of the one-dimensional Newton’s method, it is
possible that this direction does not intersect with the involved set. In any case, from our experience, any rea-
sonable projection procedure produces in practice good results. Let us also note that any projection method
has always a computational cost of order N -in each iteration-, and hence it is a minor problem. All these com-
ments are also applicable to the return algorithm corresponding to the iterative process.

Although the descent algorithm in an approximating surface is in linear tendency, the potential energy will
be far from any local minimum after the projection to the next surface. Therefore, when we are on an approx-
imating surface, we only search configurations in a reasonably good equilibrium state. It can be enough to
take a maximum disequilibrium degree between 10�2 and 10�3. In these conditions, the computational cost
of the process of obtaining a good initial position on S is not relevant in comparison with the computational
cost of searching a near local-minimum configuration on S. To apply the descent algorithm in S; F T

i must be
calculated as indicated in the previous subsection. However, some specific considerations must be made. If a
particle moving on a face of S crosses its boundary, it must be projected to this boundary before F T

i is
updated. In the new position, F T

i will decide whether the particle will move along the boundary, will return
to the original face or will go to other face. An analogous procedure must be carried out if a particle moving
along an edge of S crosses its boundary.

We finish this section by presenting a scheme of our proposal to numerically estimate the Fekete points of a
W-compact set S:

1. Generate a good initial configuration on S.
1.1. Define r approximating regular surfaces Sk, 1 6 k 6 r.
1.2. Generate a random configuration of N points on S1.
1.3. For each k, 1 6 k 6 r; obtain a configuration in a reasonably good equilibrium state on Sk by means

of the descent algorithm and project it to the next surface. The last projection is from Sr to S.
2. Starting from the last configuration, apply the descent algorithm to obtain a configuration in linear ten-

dency on S taking into account its non-smoothness.

We want to remark that the total computational cost of the process of obtaining a near local-minimum
configuration on a W-compact set S is essentially the same in all the cases that we have considered, and this
cost seems to be less that N3.
6. Some examples

The following examples show the versatility of our algorithm. We have included some examples with aca-
demic interest and others of playful character but with evident difficulties with regards to the obtaining of
equilibrium configurations.

6.1. Unit cube

For this case, we use approximating regular surfaces implicitly described by
fpðx; y; zÞ ¼ epðx2�0:25Þ þ epðy2�0:25Þ þ epðz2�0:25Þ ¼ 1;
with p 2 Rþ. More explicitly, we work with two approximating surfaces defined by p=15,30, respectively.
Fig. 11 illustrates the general behavior of our algorithm for non-smooth surfaces. In the upper part we

show the final configurations – with a maximum disequilibrium degree of 10�2 – corresponding to the approx-
imating regular surfaces with N = 10537. As we can see, the approximating surface with p = 30 has a notice-
able accumulation of particles in the most curved zones, which correspond to the edges and vertices of the final
cube. The projection between surfaces has been carried out along the direction of the normal vector by means
of the Newton’s algorithm. In the same figure (down), a near local-minimum configuration on the unit cube S
and the corresponding convergence graph are displayed. Let us note that we have not used symmetries in this



Fig. 11. Approximating configurations, final near local-minimum configuration and convergence of the algorithm for the problem of the
Fekete points of the unit cube with N = 10537 and the Newtonian kernel.
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calculation. In addition, the typical convergence behavior described in Section 3 can be observed. It is clear
that almost the whole second half of the convergence path is in linear tendency.

Next we show the quality of the solutions provided by our algorithm by analyzing the interior field and the
electrostatic charge density of the cube. Our estimations agree with some theoretical and numerical results due
to other authors. For instance, Korevaar and Monterie, in [12, Theorem 1.2], obtained the following result
involving the interior field. If x is a point in the interior of the solid cube, dx ¼ dðx;SÞ and F N

x is the field
due to xN at x – i.e, the force that would act on a unitary charge on x due to N equal charges of magnitude
1
N located at xN – then there exists a scalar c such that for each N P 2;
jF N
x j 6 c

1þ dx

d3
x

1ffiffiffiffi
N
p :
Fig. 12 (up) shows the maximum value of d3
x jF N

x j
1þdx

in the interior of the cube for different configurations of N

points covering three orders of magnitude. Each maximum is obtained by evaluating in almost 105 points. It
must be observed that a value of c for all N in the cube can be determined from the trivial case N = 2. How-
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Fig. 12. Approximation of the interior field and the electrostatic charge density of the unit cube by means of our estimations of Fekete
points.
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ever, this value is excessively conservative for large N. For this reason, the first values of N have not been con-
sidered in the figure. In any case, our calculations sharply fit the order 1ffiffiffi

N
p . In fact, for N sufficiently large, we

propose c = 0.036.
A major open question is to obtain the electrostatic charge density of a cube. A theoretical analysis of the

asymptotic behavior of the electrostatic charge density near the edges and the vertices of conductor bodies was
done by Fichera in [6]. The obtained results were applied to the unit cube in [7]. The problem has been also
treated by means of different numerical techniques. For instance, in [15], it was analyzed the dependence of the
density on the distance r from points along the middle line of a face to an edge and on the distance from points
along the diagonal of a face to a vertex. Moreover, it was showed numerical evidence of the fact that this
dependence has the form ar�

1
3 for the former and br�0:558 for the latter. In Fig. 12 (down) we give approxima-

tions of the electrostatic charge density near an edge and near a vertex of the unit cube for
N ¼ 5000; 10000; 20000; 50000 and 100000, and we compare they with the estimation given in [15]. The
approximating curves have been obtained by evaluating the normal component Fn of the total force due to
the N charges – of value 1

N – at points on S located along the middle line of a face and along a diagonal.
The values of the density presented are jF

nj
2p . The density given by our configurations tends, although very

slowly, to the estimations that appear in the literature. We want to note here that the objective of this study
is to evaluate the suitability of the configurations obtained with our algorithm, and not to carry out an accu-
rate asymptotic analysis of the electrostatic charge density of the cube.

6.2. Kelvin polyhedron

By analyzing the case of the Archimedean Kelvin Polyhedron we want to show that our configurations keep
properties like the symmetries and proportions of the considered W-compact set. For this case, the approxi-
mating surfaces have been constructed by combining the planes corresponding to the different faces. We used
the following implicit expression
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fpðx; y; zÞ ¼ epðx�0:5Þ þ epðy�0:5Þ þ epðz�0:5Þ þ e�pðxþ0:5Þ þ e�pðyþ0:5Þ þ e�pðzþ0:5Þ þ epðxþyþz�0:75Þ þ epð�xþyþz�0:75Þ

þ epðx�yþz�0:75Þ þ epð�x�yþz�0:75Þ þ epðxþy�z�0:75Þ þ epð�xþy�z�0:75Þ þ epðx�y�z�0:75Þ þ epð�x�y�z�0:75Þ ¼ 1
with p = 25, 60.
Fig. 13 shows a near local-minimum configuration of 10000 points on the Kelvin Polyhedron. In Table 4,

we present the evolution of three ratios, r1, r2 and r3, involving the number of points belonging to different
faces of the polyhedron. If ni

s; i ¼ 1; . . . ; 6; denotes the number of points belonging to each square and nj
h;

j ¼ 1; . . . ; 8; represents the number of points belonging to each hexagon, then r1 ¼ min ni
s

nj
s
; r2 ¼ min

ni
h

nj
h

and

r3 ¼ min
ni

h

nj
s
.

Table 4 also includes the evolution of the charge recovered by integrating the electrostatic density given by
different configurations. In this case, a continuum estimation of the electrostatic density has been constructed
from the Delaunay triangulation associated to the points in each face. The density value on each point xi has
been calculated as jF ij

2pN, and these values have been linearly interpolated in each triangle. Let us note that, in
spite of that this approach is very simple, the charge recovered for the distribution of 100000 points is more
than the 99%.
Fig. 13. A configuration in linear tendency on the Kelvin Polyhedron for N = 10000 with the Newtonian kernel.

4
etrical ratios and charge recovered

r1 r2 r3 q

0.9884 0.9852 2.0618 0.9713
0.9919 0.9923 2.0994 0.9788
0.9947 0.9956 2.1300 0.9840
0.9982 0.9986 2.1669 0.9893
0.9984 0.9989 2.1816 0.9922
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6.3. A more general example

Let us consider the sphere, the square and the curve defined respectively by
A ¼ ðx; y; zÞ 2 R3 : ðx� 0:75Þ2 þ ðy � 0:75Þ2 þ ðzþ 0:2Þ2 ¼ 0:64
n o

;

B ¼ ðx; y; zÞ 2 R3 : maxfjxj; jyjg 6 1; z ¼ 0
� �

;

C ¼ ðx; y; zÞ 2 R3 : maxfjx� 0:5j; jzjg ¼ 0:5; y ¼ �0:5
� �

:

We analyze the Fekete point problem for the W-compact set S ¼ A [ B [ C. This example combines the
three cases presented in Section 5.2; i.e, a surface that is the boundary of an open set, a surface with boundary
and a curve.

It must be taken into account that the electrostatic charge density in the part of B inside the sphere A, that
we denote by D, is necessarily null. For this reason, it is not necessary to consider D when the Newtonian ker-
nel is used. In fact, we have carried out some numerical experimentation with this kernel including D in the set
S; and we have observed that, effectively, the particles leave D. On the other hand, D must be explicitly con-
sidered when other kernels are used, and then the approximating surfaces require to be connected in a similar
way to the one indicated in Section 5.1.

For the construction of the approximating surfaces, we have used the following implicit functions,
f1ðx; y; zÞ ¼ e2pðx2�1Þ þ e2pðy2�1Þ � 1; f 2ðx; y; zÞ ¼ e2pz � 1;

f3ðx; y; zÞ ¼ ðx� 0:75Þ2 þ ðy � 0:75Þ2 þ ðzþ 0:2Þ2 � 0:64;

f4ðx; y; zÞ ¼ epf3ðx;y;zÞ � 1; f 5ðx; y; zÞ ¼ e2pðxþ0:5Þ2�0:25 þ e2pz2�0:25 � 1;

f6ðx; y; zÞ ¼ e2pðyþ0:5Þ � 1; f 7ðx; y; zÞ ¼ ðx� hÞ2 þ ðy � hÞ2 þ z2;
where h ¼ 0:75�
ffiffiffiffiffiffiffi
0:3
p

.
In these conditions, the implicit expression of the approximating surfaces used when D is not considered

is
fpðx; y; zÞ ¼ e�pf 2
2
ðx;y;zÞþf1ðx;y;zÞ þ e�pf3ðx;y;zÞ þ e�pðf 2

6
ðx;y;zÞþf 2

5
ðx;y;zÞÞþ1 ¼ 1:
If D is included in the analysis, the corresponding expression is
fpðx; y; zÞ ¼
1

e�pf 2
2
ðx;y;zÞþf1ðx;y;zÞ þ e�pf 2

4
ðx;y;zÞþ1 þ e�pðf 2

6
ðx;y;zÞþf 2

5
ðx;y;zÞÞþ1

þ e�3pf7ðx;y;zÞþ1 ¼ 1:
Fig. 14 shows a good configuration of 2000 points on S. The effect of connecting conductor bodies with
different dimensions can be observed. The repulsion of the sphere predominates over the repulsion of the
square, and also the repulsion of the square predominates over the repulsion of the curve.
Fig. 14. Good configuration of N = 2000 points on S for the Newtonian kernel.



Fig. 15. A Newtonian still life.
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It is important to note that in the approximation process corresponding to this case an object formed by
pieces with different dimensions is being covered by a single surface. This fact requires to choose carefully
the local degree of approximation to each one of the pieces. In this exercise we have used the approximating
surfaces obtained by taking p = 13.5, 15 in the above expression.

6.4. A still life

We present here a funny exercise that shows the adaptability of the proposed technique to a great variety of
geometries. We have composed a still life with near local-minimum configurations for the Newtonian kernel of
1500 points on a whole apple, 2500 points on a bitten apple and 1500 points on a Canary banana. Although
the three objects have been treated individually, we present all of them in Fig. 15.

The approximating surfaces of the apples are based in the following implicit functions,
f1ðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffi
x2þy2
p

�1:5

1:4

� �2

þ z�0:15
2

	 
2 � 1;

f2ðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 1:6 z

1:65

	 
4 � 0:8;

f3ðx; y; zÞ ¼ x2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy � 7Þ2 þ ðz� 1Þ2

q
� 7

� �2

� r2;

f4ðx; y; zÞ ¼ x2 þ y2 þ ðzþ 1Þ2 � 0:36;
where r ¼ 1:5� 1:4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:819375
p

.
The implicit equations of the approximating surfaces for the whole apple and for the bitten apple are,

respectively,
fpðx; y; zÞ ¼ e�pf1ðx;y;zÞ þ e�pf4ðx;y;zÞ þ 1

e1:5pf3ðx;y;zÞ þ e�1:5pz þ e1:5pðz�3:5Þ ¼ 1
and
fpðx; y; zÞ ¼
1

epf1ðx;y;zÞ þ epf2ðx;y;zÞ
þ e�pf4ðx;y;zÞ þ 1

e1:5pf3ðx;y;zÞ þ e�1:5pz þ e1:5pðz�3:5Þ ¼ 1:
For the Canary banana, the corresponding implicit expression is
fpðx; y; zÞ ¼
1P5

i¼1epfiðx;y;zÞ þ e�p sinð0:175pÞxþcosð0:175pÞzð Þ
þ 1

epf6ðx;y;zÞ þ e�pz þ epðz�4Þ ¼ 1;



Fig. 16. Some examples of the application of the algorithm with s = 0 (up), s = 2 (down to the left) and s = 3 (down to the right).
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where, for each i ¼ 1; . . . ; 5;
fiðx; y; zÞ ¼ cos
2pi
5

� �
5�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p� �
� sin

2pi
5

� �
y þ 0:75

16

p2
arctan2 z

x

� �
� 1

� �
and f6ðx; y; zÞ ¼ y2 þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

� 5Þ2 � 0:125.

6.5. Other kernels

We conclude this paper by showing some configurations in linear tendency for kernels other than the New-
tonian. We remark that the general behavior of our algorithm is essentially the same independently of the con-
sidered kernel. Fig. 16 shows a bitten apple and a cube with N = 500 and the logarithmic kernel, a Kelvin
polyhedron with N = 10000 and the Riesz’s kernel with s = 2 and a Canary banana with N = 1500 and the
Riesz’s kernel with s = 3.

These numerical results agree with the ones exposed in [10,11,25] about the reduction of the measure sup-
port corresponding to the logarithmic kernel and about the asymptotical uniform distribution of the points on
a manifold with Hausdorff dimension d when s P d. It must be noted the high concentration of points on the
singularities for the logarithmic kernel and the high degree of uniformity for s P 2 even on the singularities.
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